Implementing Glucose Control in 2009 and Beyond: Changes in Patterns and Perceptions

Charles C. Reed MSN, RN, CNRN Patient Care Coordinator Surgical Trauma ICU University Hospital San Antonio, Texas

Relationships

Improving Collaboration And Outcomes

Background

Why we started controlling glucose in the STICU

Hyperglycemia:

- Pre-existing Diabetes
- Medications
- Nutrition
- Surgery
- Dialysis Solutions
- Hypothermia
- Anesthesia
- Stress Induced Hyperglycemia

Benefits of TGC

- Patient:
 - Sepsis
 - Wound Infection
 - Dialysis
 - Blood Transfusions
 - Polyneuropathy
 - Ischemic Brain Injury
 - Respiratory Failure
 - Pneumonia
 - Infarct Size of AMI & Stroke

So Were is Glucose control Going in 2009 ?

Greet Van den Berghe 2001

- Prospective RCT -Surgical ICU patients
- Blood glucose level 80-110 or 180-200
- 1548 patients
- IIT 32% reduction in mortality
- IIT reduced sepsis by 46%
- IIT reduced LOS

Greet Van den Berghe 2006

- Prospective RCT Medical ICU
- Blood glucose level 80-110 or 180-200
- 1200 patients
- ICU LOS < 3days decreased morbidity, no reduction in mortality
- ICU LOS >3 day decrease in morbidity and mortality

Hyperglycemia & Strokes 2006

- Hyperglycemia after SAH (Prospective study of 281 patients)
 - Increased complications
 - Increased LOS
 - Increased death & disability
- Hyperglycemia after Acute Ischemic Stroke (retrospective 960 patients)
 - Increased mortality

Stroke.2006;37:199-203 ACAD EMERG MED 2006; 13:174-180

AHA Scientific Statement 2008

- Hyperglycemia in ACS patients, gaps in knowledge:
 - Appropriate blood glucose level
 - Appropriate method for measuring and monitoring
 - Benefits

AHA Scientific Statement 2008

- Hyperglycemia
 - Detrimental to ischemic myocardium
 - Perfusion defects related to micro vascular dysfunction
 - Lower rates of spontaneous reperfusion
 - Endothelial dysfunction
 - Increased platelet aggregation
 - Increased markers of vascular inflammation
 - Increased fatty acid concentration
 - Insulin resistance
 - Impaired myocardium glucose utilization

Increased O2 consumption

Circulation. 2008;117:1610-1619

AHA Scientific Statement 2008

- Recommendations
 - Initial lab work to include glucose levels
 - Blood glucose monitoring of ACS patients admitted to ICU
 - Goal 90-140
 - IV insulin infusion most effective for control of glucose in ICU
 - Treatment started as early as possible
 - Non-ICU setting BG goal <180

Circulation. 2008;117:1610-1619

The Glucontrol study 2009

- Prospective RCT of 1078 patients
 - 21 Medical/Surgical ICUs
- Study stopped due to protocol violation

The Glucontrol Study 2009

Intensive Therapy

- Target BG 4.4-6.1 mmol/L
- Achieved 6.5 (5.5-6.8)
- Mortality 17.2%
- Hypoglycemia 8.7%

Conventional Therapy

- Target 7.8-10mmol/L
- Achieved 8.0 (7.1-9.0)
- Mortality 15.3%
- Hypoglycemia 2.7%

•Study under powered for any statistical significance

Differences in Glucontrol Versus other studies

- Caloric intake
- Hypoglycemia
- Case mix and severity of illness
- Method of BG measurement

NICE Sugar Study

- Enrolled 6104 patients in RCT in Medical & Surgical ICUs, 42 hospital (Australia, New Zealand, and Canada) 87.5% were from Australia & New Zealand
 - 3054 Intensive
 - 3050 Conventional
- Criteria minimum 3 days ICU
- Targets 81-108 mg/dL or >180 mg/dL
- 90 day outcomes measures

NICE Sugar Study Findings

Intensive Insulin

- 3016 patients
- Insulin 50.2 +/- 38.1
- Mean tw BG 115 +/-18 mg/dL
- 27.5% mortality
- Hypoglycemia 6.8%

Conventional

- 3014 patients
- Insulin 16.9 +/- 29.0
- Mean tw BG 144 +/-23 mg/dL
- 24.9% mortality
- Hypoglycemia 0.5%

Differences in findings NICE versus others

- Increased cardiovascular death
- No difference in multiple organ failure
- No difference in LOS
- No difference in Vent days
- No difference in operative vs nonoperative
- No difference in diabetic vs nondiabetic
- Blood samples
- Caloric intake

Joint Statement from ADA & AACE on the NICE SUGAR Study March 24, 2009

- Findings from the NICE SUGAR Study should not lead to the abandonment of the concept of good management in the hospital setting
- Strategies must be identified to help establish structured protocols for safe and effective management of blood glucose in the ICU and on the wards

Joint Statement from AACE & ADA on Inpatient Glycemic Control May 8, 2009

- Revised glucose targets:
 - 140-180 mg/dL ICU
 - 100-180 mg/dL general wards
- Multidisciplinary approach from admission to discharge

Meta-analysis including NICE-SUGAR 2009

- 26 trials included
- 13,567 patients
- Findings:
 - No difference in mortality between groups
 - Risk of hypoglycemia did not differ by type of ICU or intensity of therapy
 - Effect of IIT differed by ICU setting
 - Cannot exclude the possibility that some patients may benefit from IIT

Glycemic Control & Diabetes Mellitus After Total Joint Arthroplasty 2009

- Retrospective Study Patients undergoing joint surgery
 - Compared controlled diabetes, uncontrolled diabetes, no diabetes in over million patients
- Uncontrolled diabetes
 - Increased complications
 - Increased mortality
 - Increased LOS

Hyperglycemia and Critical Illness Neuromyopathy (CINM) 2009

- Hypothesis: Axonal injury caused by
 - Microcircular dysfunction -> impaired O2 and nutrition (sepsis/hyperglycemia)
 - Cytokine induced changes in microvascular permeability >edema->hypoxia and energy depletion
 - Increased uptake of glucose -> enhanced reactive oxygen species-> mitochondrial dysfuntion
- Examined 2 large RCT for IIT

- IIT was associated with decrease in CINM

AACE & ADA Consensus Statement on Inpatient Glycemic Control 2009

- Does glycemic control improve outcomes?
- What glycemic targets can be recommended?
- What treatment options are available for achieving optimal glycemic target?
- Is inpatient management of hyperglycemia safe?
- What systems need to be in place to achieve these recommendations?
- Is treatment of inpatient hyperglycemia costeffective?
- What are the strategies for transitioning to OP care?

Lets answer these

Questions

Glycemic Control Management

- Process/Implementation Management
 - Support, multidisciplinary team, assessment of current practice, barriers, & education
- Medication Management
 - Protocols, order sets & Insulin (Drips, S/S, Basal)
- Data Management
 - Results

Process Management

- Support:
 - Administration
 - Physician
 - Nursing
 - Laboratory
 - Pharmacy

- Dietary
- Case management
- Information Systems
- Quality Dept.

Process Management

- Inpatient Hyperglycemia
 - Stress Hyperglycemia (Temporary)
 - Resolves, no further action needed
 - Previously Undiagnosed Diabetes
 - Need to confirm
 - Implement therapy & Education
 - Outpatient follow-up

– Previously Diagnosed Diabetes

- Evaluate level of control and compliance
- Adjust therapy if necessary
- Assess for complications
- Outpatient follow-up

Assessing Current Practice

TGC-Barriers to Protocol and to Achieving Target

Barriers :

•Survey of 269 U.S. hospitals to determine current glucose management practices

Poster Presentation SCCM 2009: How are U.S. hospitals addressing glycemic control in their intensive care settings? Cook C., Abad V., Kongable G., Hansen Y., McMahon D.

Barrier	Strategy/Solution
Insufficient glucose meters to accommodate the increased testing needs	 Purchase additional glucose meters Ask vendor to provide extra on-site replacement meters at no charge until they are activated
Nursing time requirements involved in monitoring and adjustments	 Get ancillary help to check glucose values (eg, nurse assistants) Make extra efforts to make protocols clear with few required calculations Avoid duplicate recording Consider meters requiring shorter time and a smaller sample (to avoid need for re-sampling)
Requirements for uncomfortable frequent sticks	 Utilize central lines or arterial lines These tend to vary by <10% from POC readings May not be available in non-critical care settings Variable depth lancets
Staff fear of hypoglycemia	 Educate on glucose control benefit & true definition of hypoglycemia Measure staff fasting glucose levels to demonstrate normal range Establish metrics and publicly report hypoglycemia event rates Pilot IIP on small scale Protocol and education for prevention of hypoglycemia

Barrier	Strategy/Solution
Difficulty gaining consensus on glycemic target	 Compromise if needed on glucose target Start with higher goal such as (90-140 mg/dL) Others may be willing to ↓ goal when feasibility is seen Allow for different targets in different units if indicated Maintain consistency in other respects
Focal points of resistance	 Identify local nurse or physician champion within resistant site Pilot protocol in an area with least resistance Will gain momentum with initial success and adjustments
Lack of integrated information and reporting systems	 Incorporate information systems personnel onto team Advocate for ↑ reporting capability with administrative leaders Use sampling methods to collect data until automated systems are available
Multiple providers, hand offs, and opportunities for error and communication breakdown, diffusion of responsibility for glycemic control	 Involvement of varied front line providers Check lists for important items to communicate on transfer/transport Common protocols/education for similar units

Iatrogenic Hypoglycemia

Critical Thinking

- •NPO/Feeds held/Regular Diet
- •Dialysis
- •IVF changed

Medication Errors

- •Wrong dose
- •Failure to change insulin dosing

•Missed Care

•Infrequent glucose monitoring

Medication Management

- Yale
- Leuven
- Portland
- Digami
- University of Washington
- Rush University
- Northwestern University

Medication Management

- Develop protocol
 - Prompt users to initiates drip
 - Permits titration by ICU nurses
 - Ensure continuous administration of glucose
 - Specifies frequency glucose monitoring
 - Specify treatment plan for hypoglycemia.
 - Ensure nurses can handle increased burden of frequent glucose checks
 - Transition to subcutaneous insulin

Medication Management: Insulin Preparations

- Human
 - Rapid Acting
 - Lispro
 - Aspart
 - Glulisine
 - Short Acting
 - Regular
 - Intermediate Acting
 - Lente
 - NPH
 - Long Acting
 - Insulin glargine analog Detemir
 - Ultralente

- Human
 - Pre-mixed
 - Humalog[™] 75/25 Novolog Mix[™] 70/30
 - Нитиlin[™] 70/30 Novolin[™] 70/30
- Animal Source
 - Regular
 - NPH
 - Lente

Medication Management

- Continuous variable rate IV drip
 - Regular Insulin
 - Continue IV Insulin until patient tolerating food/feeds
 - Continue IV Insulin at least 2 hrs after 1st SC Insulin dose given (longer if basal Insulin)
- Options to consider for transition:
 - Regular insulin sliding scale not effective
 - Premixed Insulin (Basal only)
 - Basal-bolus
 - Long acting Insulin and rapid acting Insulin
- Oral hypoglycemic agents
 - Stable patients eating (stability in nutrition & condition)
 - Not appropriate

ACE/ADA Consensus Statement, Endocrine Practice.2006:12(4)459-468

Medication Management

- Education
 - Physicians
 - Nurses
 - Techs
- Cook (2008)
 - S/S vs IV
 - Options/works?
 - Policies/protocols?
 - Target ranges?

Data Management (Metrics)

- Identify Program Goal
 - 80-110, 80-140
 - What are you comfortable with?
- Identify how to measure metrics/compliance
 - Who: QA department, nurse, director, lab, POC office
 - How: Chart, crystal or lab report, data mining software
 - When: Shift, daily, weekly, monthly, or quarterly
- Identify what to measure
 - Mean value (basic) good for trending
 - % values in range (basic) good for trending
 - % time in range/ range by patient

Data Management How well are we doing?

Decrease in Mean Blood Glucose

Mean based on values 80-600

- 2003 156.1
- 2004 139.5
- 2005 130.8

We thought we were doing a great job!!

•Survey on Glycemic Control in Hospitals: 30% of ICU patients mean BG > 180 mg/dL

Nursing Survey before TGCM

- A TGC survey was developed to evaluate the nursing staff's:
 - Knowledge of existing protocol.
 - Perceived percentage of effectiveness in achieving target range.
 - Perceived barriers to TGC.
 - Knowledge of available research literature on TGC.
 - Knowledge of benefits related to TGC.
- 57 nurses, 92.3% participated in the survey.
 - 100% knew of the protocol and target range.
 - 86% believed they kept patients in target range 50% to 90% of the time
 - 59% believed they achieved target range 70-90% of the time
 - Our Survey Results:
 - STICU patients achieved target range 38% of the time

Implementation Data Management RALS-TGCM

- Monitor, assess, and reassess
 Daily, Weekly, Monthly
- Share the results
 - E-mail
 - Bulletin board
 - Staff meeting

					RALS
Summary of Glucose Values by Operator I2_Recovery 1/1/2005 - 1/31/2005					
Operator ID	n	Mean	Range	% In Range	% Out of Range
001651	9	160.78	89-271	44.44%	55.56%
089961	4	140.25	77-187	0.00%	100.00%
1119540001	1	127.00	127-127	100.00%	0.00%
1145150007	11	170.64	69-281	27.27%	72.73%
1566050009	6	180.00	128-246	16.67%	83.33%
1694950005	1	225.00	225-225	0.00%	100.00%
1787780004	1	178.00	178-178	0.00%	100.00%
185330	1	291.00	291-291	0.00%	100.00%
1876780006	4	128.00	90-199	75.00%	25.00%
1887850004	1	149.00	149-149	0.00%	100.00%
200956	1	92.00	92-92	100.00%	0.00%
	_	167.00	105.007	20.00%	00.00%

Percent of Values in Target Range (80-110)

Percent in the Target Range (80-110)

Patient in Target Range of (80-110 mg/dL)

Percent of Time in Range 80-110 mg/dl

Study Results

91,536 glucose results collected

Presented at SCCM 2008

Average Daily Glucose Levels January 2003- February 2007

Benefits of a Data Mining Software Program: RALS-TGCM

- Overcomes the barrier of limited visibility to data
- Real-time display of glucose control data
- Glucose trends to those caring for patients
- Access to prospective blood glucose data
- Potential protocol improvement & adherence

Reducing Invalid Results

- Matheny (2007)
 - 3616 diabetic patients
 - 613 Lacking POC BG two days
- Colard 2004
 - St. Lukes Hospital Kansas City MO
 - 12,000 POC BG tests month
 - 400-500 (up to 12.4%)
 - 274 4.9%
 - 102 1.7%
 - 6 .18%

Matheny M et al. Treatment Intensification and Blood Glucose Control Among Hospitalized Patients. J Gen Intern Med. 2007;23(2):184-189 Colard D. Reduction in Patient Identification Errors Using Technology. 2004 Clinical Lab Expo AACC

Invalid POC Blood Glucose

- Glycemic Control Critically ill
 - Start treating hyperglycemia 180
 - Target range 140-180mg/dL
 - IV insulin
 - Validated protocols
 - Frequent glucose monitoring
- Glycemic Control Noncritically ill
 - Target: Premeal <140, random <180mg/dL</p>

- Safety issues
 - Over and under treatment of hyperglycemia major safety concern
 - Education
 - Caution interpreting in select populations
 - Buy-in and financial support
- Cost
 - Cost-effective

- Discharge planning
 - Transitioning begins at admission
 - Discharge planning, education, communication

- Areas of future research
 - Stress hyperglycemia
 - Severe hypoglycemia
 - Glycemic targets on general wards
 - Glycemic variability
 - Hospital systems and safety
 - Insulin treatment and monitoring
 - Pediatric inpatient populations

Case Studies: Glucose more than just a value

- Glucose Variability
- Utilizing hyperglycemic episodes as a patient indicator for a worsening condition:
 - Bleeding
 - Sepsis
- Failure to Rescue
 - Careful surveillance and timely identification of complication
 - Initiating appropriate intervention and notifying the team

Clinical Case Study 1

Clinical Case Study 3

250

Clinical Case Study 5

Unresolved

Journal of American College of Surgeons

Intensive Insulin Protocol Improves Glucose Control and Is Associated with a Reduction in Intensive Care Unit Mortality

Charles C Reed, BSN, Ronald M Stewart, MD, FACS, Michele Sherman, BSN, John G Myers, MD, FACS, Michael G Corneille, MD, FACS, Nanette Larson, BSN, Susan Gerhardt, MSN, Randall Beadle, BSN, Conrado Gamboa, MS, RPh, Daniel Dent, MD, FACS, Stephen M Cohn, MD, FACS, Basil A Pruitt Jr, MD, FACS

BACKGROUND:	Intensive insulin therapy to maintain serum glucose levels between 80 and 110 mg/dL has previously been shown to reduce mortality in the critically ill; recent data, however, have called this benefit into question. In addition, maintaining uniform, tight glucose control is challeng- ing and resource demanding. We hypothesized that, by use of a protocol, tight glucose control could be achieved in the surgical trauma intensive care unit (STICU), and that improved glucose control would be beneficial.
STUDY DESIGN:	During the study period, a progressively more rigorous approach to glucose control was used, culminating in an implemented protocol in 2005. We reviewed STICU patients' blood glucose levels, measured by point-of-care testing, from 2003 to 2006. Mortality was tracked over the course of the study, and patient charts were retrospectively reviewed to measure illness and injury severity.
RESULTS:	Mean blood glucose levels steadily improved ($p < 0.01$). In addition to absolute improvements in glucose control, total variability of glucose ranges in the STICU steadily diminished. A reduction in STICU mortality was temporally associated with implementation of the protocol ($p < 0.01$). There were fewer intraabdominal abscesses and fewer postinjury ventilator days after implementation of the protocol. There was a small increase in the incidence of clinically relevant hypoglycemia.
CONCLUSIONS:	Improvements in glucose control in the ICU can be achieved by using a protocol for intensive insulin therapy. In our ICU, this was temporally associated with a significant reduction in mortality. (J Am Coll Surg 2007;204:1048–1055. © 2007 by the American College of Surgeons)

Insulin resistance and hyperglycemia are extremely com- Texas Medical Branch at Galveston (UTMB) have demon-