IFCC Recommendation for Reporting Blood Glucose Results & Sources of Error in Glucose POCT

Ellis Jacobs, Ph.D., DABCC

New York University School of Medicine Bellevue Hospital Center New York, New York

Reporting of Glucose Concentration

- ADA Recommendation
 - In terms of glucose in venous plasma
- WHO Recommendation
 - In terms of glucose in whole blood

Activity & Molality of Glucose

- Biosensors respond to activity of glucose
- Activity assumed to be equal to molality
- Activity is related to chemical potential kJ/mol
- Molality = amount/unit water mass = mmol/kg H2O

Mass Concentration of Water

- Average erythrocyte cytoplasm = 0.71 kg/L
- Whole/hemolyzed blood = 0.84 kg/L
- Plasma = 0.93 kg/L
- Aqueous Calibrators = 0.99 kg/L

Note: Normal is defined as Hct= 0.43 and proteins and lipids in plasma within reference ranges

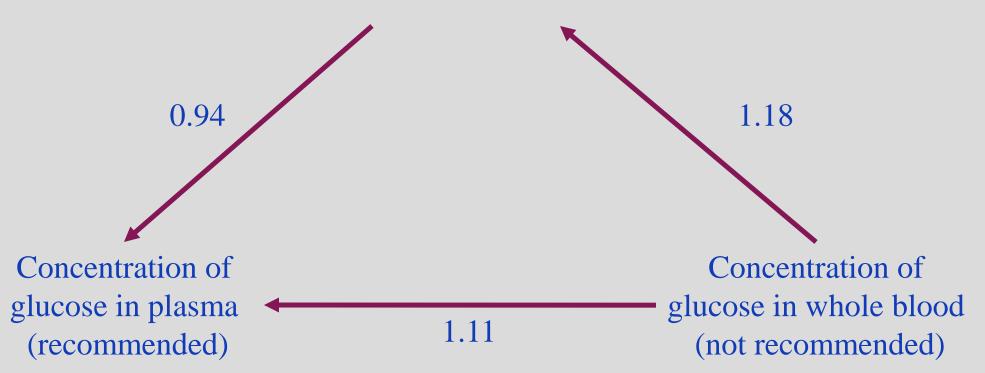
Direct Reading Glucose Biosensors

- Detect Activity in specimen (Blood or Plasma)
- Use aqueous calibrators to provide "relative molality" results
- Need to correct for differences in water concentration:
 - Blood: 0.99/0.84 = 1.18
 - Plasma: 0.99/0.93 = 1.06

Reporting of Glucose Concentration

- ADA Recommendation
 - In terms of glucose in venous plasma
- WHO Recommendation
 - In terms of glucose in whole blood
- ~11% Difference (Plasma > Blood)

Relationship Between Whole Blood and Plasma Glucose Concentration

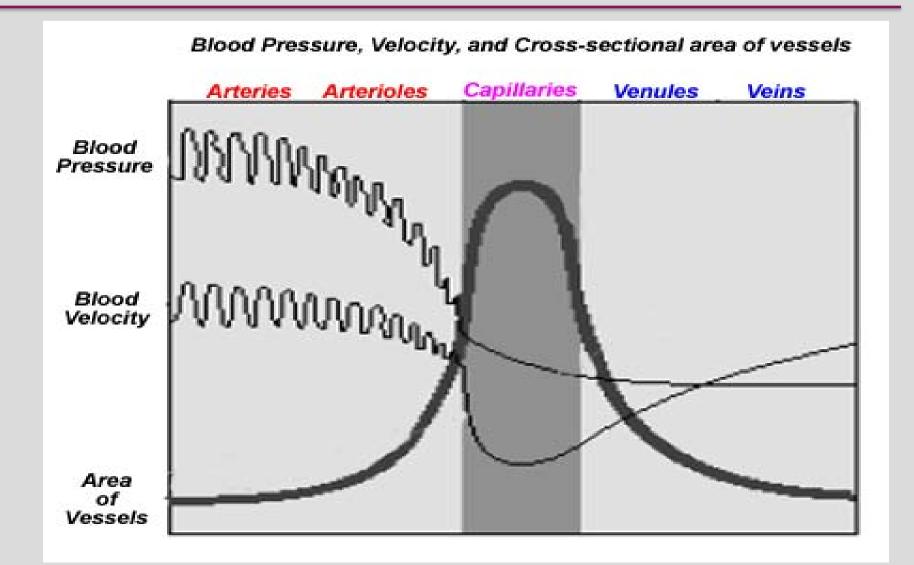

Whole Blood Glucose = [Plasma Glucose] x [1.0 - (.0024 x % Hematocrit)]

or

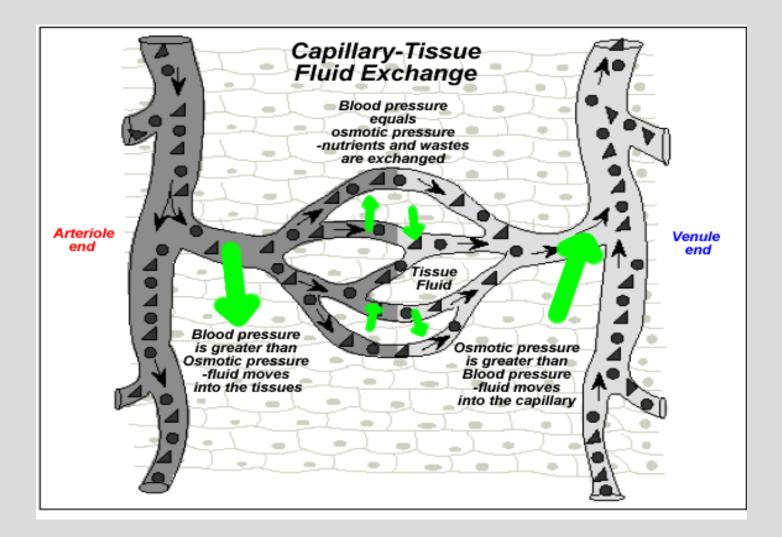
Whole Blood Glucose = [Plasma Glucose] x 0.892 or Whole Blood Glucose = [Plasma Glucose] ÷ 1.12

Conversion Factors for Different Quantities of Glucose

Unmodified Direct-reading biosensor result "relative molality" of glucose in plasma or whole blood (not recommended)


Phases of Analytical Testing

- Preanalytical
- Analytical
- Post Analytical


Preanalytical Sources of Variance in Bedside Glucose Testing

- Sample source
- Sample type
- Timing
- Additives
- Glycolysis
- Hematocrit Effect
- Interfering Substances

Effect of Branching of Arteries into Capillaries

Capillary-Tissue Fluid Exchange

Patient Factors Which Influence Capillary Glucose Testing

- Poor peripheral circulation
- Hypo/Hypervolemia
- Exercise
- Positions
- Stress
- Alchohol/Drugs
- Uremia

Special Medical Conditions

- Hypotension or shock
 - Pseudohypoglycemia may result from increased glucose extraction by the tissues because of low capillary flow and increased glucose transit time
- Change or pathology of capillary beds
 - Raynaud phenomenon
 - Peripheral vascular disease
 - Edema etc.
- Hyper-osmotic ketoacidosis
 - Pseudohypoglycemia may result from influx of fluid from the tissue and consumption of the glucose in the capillary bed

Analytical Sources of Error

- Technique
- Poor Instrument Maintenance
- Methodologies
- Interferences

Analytical Methods Utilized in Bedside Glucose Testing

- Reflectance Colorimetry
- Polarography
- Amperiometric
- Rate Spectrophotometry

Glucose Oxidase (GO)

GO $Glucose + O_2 \longleftrightarrow Gluconolactone + H_2O_2$ $H_2O_2 + Reduced Dye \longleftrightarrow Oxidized Dye + H_2O$

 $GO + Glucose \longleftrightarrow Gluconolactone + GO-reduced$ GO-reduced + Ferrocene (Oxid) \leftrightarrow GO + Ferrocene (Red) Ferrocene (Red) \longrightarrow Ferrocene (Oxid) + e⁻

Glucose Oxidase Limitations

- Ag, Hg, Cu inhibitors of GO
- Negative Interferences of Indicator Rxn
 - Ascorbic Acid
 - Bili, Uric Acid, Citric Acid, l-Dopa, Aldose
 - Sugars, Acetoacetic Acid, Creatinine, L-cysteine
- Positive Interferences
- O₂ concentration

Hexokinase (HK) Glucose + ATP $\leftarrow HK \longrightarrow Glucose-6-P + ADP$

 $G-6-P-DH \longrightarrow 6-Phosphogluconate + NADP + \longleftrightarrow 6-Phosphogluconate + NADPH + H + COMPANDE + C$

Glucose-6-P + NAD + $\leftarrow \longrightarrow$ 6-Phosphogluconate Mg + NADH + H +

 $NADH + MTT \longleftrightarrow Formazan + NAD^+$

MTT – methylthiazolyldiphenyl tetrazolium

Hexokinase Specificity

 Not totally specific for beta-D-glucose, will react with other hexoses(fructose, mannose, glucosamine)

 Coupling reaction with G6P-DH enhances overall specificity

Glucose Dehydrogenase (GD - NAD)

 $Glucose + NAD + \longleftrightarrow^{GD} Gluconolactone + NADH$

 $NADH + MTT \longleftrightarrow Formazan + NAD^+$

 $GD-NADH + PQ (Oxid) \leftrightarrow GD-NAD^{+} + PQ (Red)$ $PQ (Red) \longrightarrow PQ (Oxid) + e^{-}$

NAD – nicotinamide adenine dinucleotide

MTT – methylthiazolyldiphenyl tetrazolium

PQ – Phenanthroline quinone

Glucose Dehydrogenase (GD - FAD)

 $Glucose + GD-FAD^{+} \longleftrightarrow Gluconic Acid + GD-FADH$

 $GD-FADH + Ferricyanide \leftrightarrow GD-FAD^+ + Ferrocyanide (Red)$

Ferrocyanide (Red) \longrightarrow Ferricyanide (Oxid) + e⁻

FAD – flavin adenine dinucleotide

Glucose Dehydrogenase (GD - PQQ)

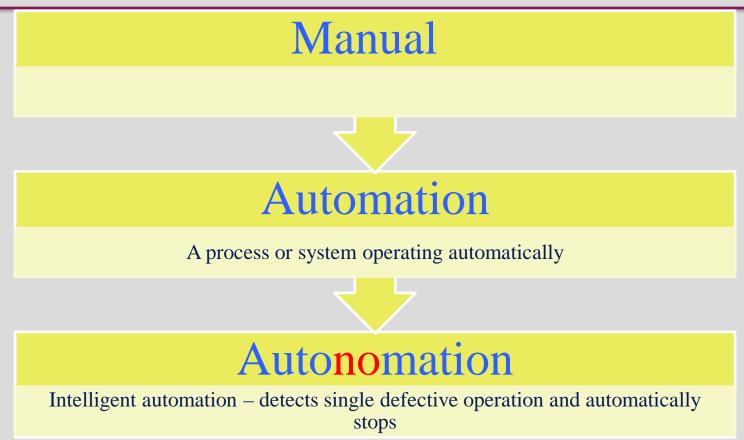
 $Glucose + GD-PQQ \longleftrightarrow Gluconic Acid + GD-PQQ ^{2-}$

GD-PQQ ²⁻ + 2 Ferricyanide \leftrightarrow GD-PQQ + 2 Ferrocyanide (Red) 2 Ferrocyanide (Red) \longrightarrow 2 Ferricyanide (Oxid) + 2e⁻

PQQ – pyrroloquinoline quinone

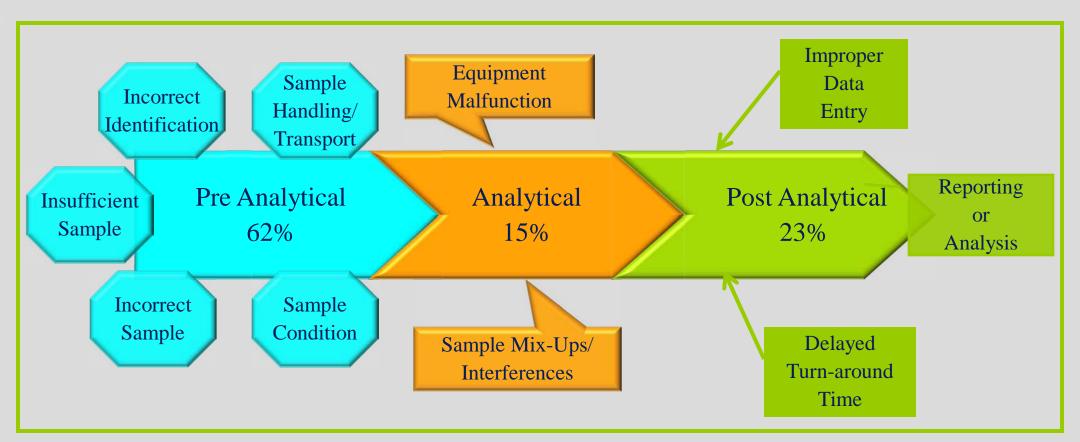
Glucose Dehydrogenase Advantages

- GDH-NAD Highly specific for Beta-D-glucose
- Not affected by Uric Acid, Bili & Ascorbic Acid
- Single Step Reaction
- High turnover rate


Glucose Dehydrogenase Disadvantages

- GDH-FAD Cross Reacts with d-Xylose
- GDH-PQQ Cross Reacts with
 - d-Xylose
 - Maltose (in some immunoglobulin preparations)
 - Galactose
 - Icodextrin (peritoneal dialysis solutions)

Postanalytical Causes of Variance


- Transcription Errors
- Communication

Evolution of POCT

Ehrmeyer S, Lassig R. Clin Chem Lab Med 2007;45(6):766-773

Thinking in the POCT Box

As autononmation reduces errors in the box,

further reductions must occur outside the box.

Thinking Outside the POCT Box

- Pre-pre: Phsician must consider
 - What POCT is available?
 - What POCT will best serve the patient?
 - Will an immediate answer improve the patient's outcome?
- Post-post: Is the Physician?
 - Receptive to using an immediate POCT result
 - Able to interpret result in the patient's context
 - Amenable to initiating an immediate response

QUESTIONS